Boats and Streams: 8 Important Shortcuts \& Tricks Explained with Examples

Stream: Moving water of the river is called stream.
Still Water: If the water is not moving then it is called still water.
Upstream: If a boat or a swimmer moves in the opposite direction of the stream then it is called upstream.
Downstream: If a boat or a swimmer moves in the same direction of the stream then it is called downstream.

Points to remember

i. When speed of boat or a swimmer is given then it normally means speed in still water.
ii. If speed of boat or swimmer is $x \mathrm{~km} / \mathrm{h}$ and the speed of stream is $\mathrm{y} \mathrm{km} / \mathrm{h}$ then,
Speed of boat or swimmer upstream $=(x-y) \mathrm{km} / \mathrm{h}$
Speed of boat or swimmer downstream $=(x+y) \mathrm{km} / \mathrm{h}$
iii. Speed of boat or swimmer in still water is given by
= 1/2(Downstream + Upstream)
Speed of stream is given by
= 1/2(Downstream - Upstream)
Some Shortcut Methods

Trick-1:

A man can row certain distance downstream in t 1 hours and returns the same distance upstream in t 2 hours. If the speed of stream is $\mathrm{y} \mathrm{km} / \mathrm{h}$, then the speed of man in still water is given by
$=\mathrm{y}^{*}(\mathrm{t} 2+\mathrm{t} 1) /(\mathrm{t} 2-\mathrm{t} 1)$
Ex: A man can row certain distance downstream in 2 hours and returns the same distance upstream in 4 hours. If the speed of stream is $5 \mathrm{~km} / \mathrm{h}$, then the speed of man in still water ?
a. 15
b. 10
c. 12
d. 20
Sol: $=5^{*}(4+2) /(4-2)=15 \mathrm{~km} / \mathrm{hr}$

Trick-2:

A man can row certain distance downstream in t1 hours and returns the same distance upstream in $\mathbf{t 2}$ hours. If the speed of stream is $\mathrm{y} \mathrm{km} / \mathrm{h}$, then the speed of man in still water is given by
$=y^{*}(\mathrm{t} 2-\mathrm{t} 1) /(\mathrm{t} 2+\mathrm{t} 1)$
Ex: Ramesh can row a certain distance downstream in 6 hours and returns the same distance in 9 hours. If the speed of Ramesh in still water is 12 kmph. Find the speed of the stream?
a. 2.4
b. 10
c. 1.2
d. 20

Sol : Speed of the stream $=$

$$
12 \text { (} 9-6) /(9+6)
$$

$$
=2.4 \mathrm{kmph}
$$

Trick-3:

A man can row in still water at $x \mathrm{~km} / \mathrm{h}$. In a stream flowing at $\mathrm{y} \mathbf{k m} / \mathrm{h}$, if it takes him ' t ' hours to row to a place and come back, then the distance between two places is given by

$$
=\left[t^{*}\left(x^{\wedge} 2-y^{\wedge} 2\right)\right] /(2 * x)
$$

Ex: A man can row in still water at $4 \mathrm{~km} / \mathrm{h}$. In a stream flowing at $2 \mathrm{~km} / \mathrm{h}$, if it takes him '5' hours to row to a place and come back, then the distance between two places ?
a. 15
b. 10
c. 12
d. 7.5

Sol : $[5 *(16-4)] /(2 * 4)=7.5 \mathrm{~km}$

Trick-4:

A man can row in still water at $x \mathbf{k m} / \mathrm{h}$. In a stream flowing at $\mathbf{y} \mathbf{k m} / \mathrm{h}$, if it takes t hours more in upstream than to go downstream for the same distance, then the distance is given by

$$
=\left[t^{*}\left(x^{\wedge} 2-y^{\wedge} 2\right)\right] /(2 * y)
$$

Ex: A man can row in still water at $4 \mathrm{~km} / \mathrm{h}$. In a stream flowing at $2 \mathrm{~km} / \mathrm{h}$, if it takes 3 hours more in upstream than to go downstream for the same distance, then the distance swims by person ?
a. 15
b. 9
c. 12
d. 7.5

Sol : $[3 *(16-4)] /(2 * 2)=9 \mathrm{~km}$

Trick-5:

A man can row in still water at $x \mathrm{~km} / \mathrm{h}$. In a stream flowing at $\mathrm{y} \mathrm{km} / \mathrm{h}$, if he rows the same distance up and down the stream, then his average speed is given by

$$
=\left(x^{\wedge} 2-y^{\wedge} 2\right) / x
$$

$=($ Downstream * Upstream)/man speed in still water.

Ex: A man can row in still water at $4 \mathrm{~km} / \mathrm{h}$. In a stream flowing at $2 \mathrm{~km} / \mathrm{h}$, if he rows the same distance up and down the stream, then his average speed ?
a. 6
b. 9
c. 3
d. 7.5

Sol : (16-4)]/4 = $3 \mathrm{~km} / \mathrm{hr}$

Trick-6:

A man can row a distance ' D ' upstream in t1 hrs. If he rows the same distance down the stream in t 2 hrs . then speed is given by Stream speed $=\left[D^{*}(\mathrm{t} 1-\mathrm{t} 2)\right] /\left(2^{*} \mathrm{t} 1^{*} \mathrm{t} 2\right)$
Ex: A man can row a distance 30 km upstream in 5 hrs . If he rows the same distance down the stream in 3 hrs . then speed of stream ?
a.. 8
b. 4
c. 2
d. 6

Sol : $[30 *(5-3)] /(2 * 5 * 3)=2 \mathrm{~km} / \mathrm{hr}$

Trick-7:
A man can row a distance ' D ' upstream in t1 hrs. If he rows the same distance down the stream in t 2 hrs . then speed is given by Man speed $=\left[D^{*}(\mathrm{t} 1+\mathrm{t} 2)\right] /(2 * \mathrm{t} 1 * \mathrm{t} 2)$
Ex: A man can row a distance 30 km upstream in 5 hrs . If he rows the same distance down the stream in 3 hrs . then speed of man ?
a. 8
b. 4
c. 2
d. 6
Sol : $[30 *(5+3)] /\left(2 * 5^{*} 3\right)=8 \mathrm{~km} / \mathrm{hr}$

