
TEST BOOKLET

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

Test Booklet Series

Serial No.

905962

BAC-31

CIVIL ENGINEERING

Time Allowed: 2 Hours

Maximum Marks: 300

INSTRUCTIONS TO CANDIDATE

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. ENCODE YOUR OPTIONAL SUBJECT CODE AS MENTIONED ON THE BODY OF YOUR ADMISSION CERTIFICATE AND ADVERTISEMENT AT APPROPRIATE PLACES ON THE ANSWER SHEET.
- 3. ENCODE CLEARLY THE TEST BOOKLET SERIES A, B, C OR D AS THE CASE MAY BE IN THE APPROPRIATE PLACES IN THE ANSWER SHEET USING HB PENCIL.
- 4. You have to enter your Roll No. on the Test Booklet in the Box provided along side. DO NOT write anything else on the Test Booklet.
- 5. This Test Booklet contains 120 items (questions). Each item comprises four responses (answers). You will select the response which you want to mark on the Answer Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
- 6. You have to mark all your responses **ONLY** on the separate Answer Sheet provided by using HB pencil. See instruction in the Answer Sheet.
- 7. All items carry equal marks. All items are compulsory. Your total marks will depend only on the number of correct responses marked by you in the Answer Sheet. For each question for which a wrong answer is given by you, one fifth (0.20) of the marks assigned to that question will be deducted as penalty.
- 8. Before you proceed to mark in the Answer Sheet the responses to various items in the Test Booklet, you have to fill in some particulars in the Answer Sheet as per instructions sent to you with your **Admission Certificate.**
- After you have completed filling in all your responses on the Answer Sheet and the examination has
 concluded, you should hand over to the Invigilator the Answer Sheet, the Test Booklet issued to you.

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE ASKED TO DO SO

	(a) (c)	low shear strength low compressibility	(b) (d)	low permeability	
		-			
2.		t grain size distribution curve			
	(a)	narrow range of grain sizes.		e	
	(b)	wide range of grain sizes.			
	(c)	uniform grain sizes.	at • more and • • more than	¥	
	(d)	certain range of missing gra	iin sizes.	at .	
3.	Whic	ch of the following describes pacted wet of optimum?	a soil comp	acted dry of optimum relative to	the same soil
	(a)	Dispersed structure, higher	strength, hig	her swelling.	
i	(b)	Flocculated structure, highe			
	(c)	Dispersed structure, lower	strength, less	permeability.	
	(d)	Higher permeability, highe	r strength, hi	gher swelling.	
	TI		(C) for a ren	noulded sample whose liquid lin	nit is 40% is
4.				0.28	The second contraction in the second
	(a)	0.21	(b)	0.028	
	(c)	0.021	(d)	0.026	
5.	The	only stress of Boussinesq su	itable for con	nputation of stress in soils is	
	(a)	vertical stress	(b)	horizontal stress	
	(c)	tangential stress	(d)	shear stress	
2	E.a.	mining phonomenon to occur	in soils the	most important condition to be	satisfied is that
6.	the	piping phenomenon to occur	. III SOIIS UIC	most important outside in	
	(a)	specific gravity of soil soli	ds is more th	an 2.8.	
	(b)	void ratio is more than 2.0			
	(c)	hydraulic gradient is nearl			
	(d)	soil is fine grained.			
7.		stability analysis of an ear	th dam for s	teady seepage case, the most a	appropriate test
	(a)	unconsolidated undrained	test (b)		
	(c)	unconsolidated drained te	st (d)	consolidated drained test	
8.	Nec	gative skin friction on a pile		S	
0.	(a)	acts downward and decrea	ses the load	carrying capacity of the pile.	
	(b)	acts downward and increa	ses the load	carrying capacity of the pile.	
	(c)	acts upward and decrease	s the load car	rying capacity of the pile.	
	(d)		the load car	rying capacity of the pile.	2
σ.	8 8		2		BAC-3
Sei	ries-B		2	*	

1. A steep flow curve indicates soil of

9.	KN	m ² . If the effective stress is further	10 mr increa	m when effective stress was increased from 50 ased from 100 kN/m ² , then further settlement of
	the (a) (c)	ciay shall be	(b) (d)	20 mm
10.		2		ace i.e. surface area per mass of the given soils
	is (a)	silt, sand, colloids, clay	(b)	
	(c)	sand, silt, clay, colloids	(d)	clay, silt, sand, colloids
11,	For (a) (c)	stability analysis of an earth dam for unconsolidated undrained test unconsolidated drained test	or stead (b) (d)	
12.	Whi (a) (b)	ile designing the abutments of a brid active earth pressure. earth pressure at rest with value of		e lateral earth pressure to be considered is
	(c) (d)	earth pressure at rest with value on none of them.		
13.	The by re (a) (b) (c) (d)	rise of water table below the found educing cohesion and effective unit weigh cohesion and effective unit weigh effective unit weight of soil and e effective angle of shearing resistar	t of so t of so ffectiv	oil.
14.		ton's law of viscosity is given by th		
		$\tau = \mu^2 \frac{du}{dy}$	(b)	$\tau = \sqrt{\mu} \frac{du}{dy}$ $\tau = (\mu)^{3/2} \frac{du}{dy}$
	(c)	$\tau = \mu \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{y}}$	(d)	$\tau = (\mu)^{3/2} \frac{du}{dy}$
15.		ace tension is expressed in		•
	(a) (c)	N/m N ² /m	(b) (d)	N/m ² N/m ³
16.	Gaug (a) (b) (c) (d)	ge pressure is defined as pressure measured with respect to pressure measured from zero pressure absolute pressure plus atmospheric pressure given by a gauge.	ure.	
17.	The pelov	pressure intensity at a point in water v surface is	er is gi	iven by 49.05 kN/m ² . The depth to that point
	(a) (c)	0.198 m 5 m	(b) (d)	481.2 m 10 m
BAC-	31		3	Series-B

18.	The total pressure an a vertical plate 2 r surface in water with its one width on the (a) 16 kN (c) 78.48 kN	n wide e free (b) (d)	e and 4 m depth when held normal to the free surface is 16,000 kN 32 kN
19.	A submerged body is supposed to be in second (a) center of buoyancy coincides widted (b) center of gravity lies above center (c) center of buoyancy lies above center (d) when buoyant forces is less than the	h cond of bud er of g	crete of gravity. oyancy. gravity.
20.	If the position of metacentre M lies below in a state of (a) stable equilibrium (c) neutral equilibrium	ow c.g (b) (d)	of the floating body G, the body will remain unstable equilibrium none of the above
21.	•		y given time does not change with respect to unsteady flow uniform flow
22.	The path followed by a fluid particle in (a) stream line (c) streak line	motion (b) (d)	n is called a path line equipotential line
23.	In fluid mechanics, the continuity equation principle of (a) conservation of momentum (c) conservation of energy	ation (b) (d)	is a mathematical statement embodying the conservation of mass none of the above
24.	is defined as a scalar function with respect to any direction gives the fluid velocity potential function (c) circulation	of sp uid ve (b) (d)	ace and time such that its negative derivative elocity in that direction. stream function vorticity
25.	The streamlines and equipotential lines (a) normal to each other (b) parallel to each other (c) always intersecting at acute angle (d) lie one over the other		
26.	A stagnation point in a fluid flow is a position of the pressure is zero (c) pressure and velocity are zero	(b)	which total energy is zero velocity is zero
27.	A stream function is given by $\Psi = x^2$ appoint (1, 3) will be (a) 6 (c) -6	+ y ² . (b) (d)	The velocity component in the x direction at $\frac{2}{\sqrt{40}}$
Seri		4	BAC-31

(a)
$$\frac{dp}{\rho} + v^2 \cdot dv + g \cdot dz = 0$$

(b)
$$\frac{dp}{\rho} + v \cdot dv + g \cdot dz = 0$$

(c)
$$\frac{dp}{\rho} + v \cdot dv + g^2 \cdot dz = 0$$

(d)
$$\frac{dp}{\rho^2} + v^2 \cdot dv + g \cdot dz = 0$$

29. The piezometric head is the summation of

- velocity head and pressure head.
- pressure head and elevation head. (b)
- (c) velocity head and elevation head.
- (d) total head.

30. A Venturimeter is used for measuring

(a) pressure. (b) piezometric head.

(c) total energy.

flow rate. (d)

31. Dynamic similarity between the model and prototype is the

- (a) similarity of motion.
- (b) similarity of lengths.
- (c) similarity of forces.
- (d) similarity of flow.

32. The boundary layer separation occurs when

(a)
$$\frac{dp}{dx} < 0$$

(b)
$$\left(\frac{\partial u}{\partial y}\right)_{y=0} = 0$$

(c)
$$\left(\frac{\partial u}{\partial y}\right)_{y=0} > 0$$

(d)
$$\left(\frac{\partial u}{\partial y}\right)_{y=0} < 0$$

33. Loss of head due to sudden enlargement is given as

(a)
$$\frac{(V_1 - V_2)^3}{2g}$$

(b)
$$\frac{(V_1 - V_2)^2}{2g}$$
(d)
$$\frac{\sqrt{V_1 - V_2}}{2g}$$

(c)
$$\frac{V_1^2 - V_2^2}{2g}$$

(d)
$$\frac{\sqrt{V_1 - V_2}}{2g}$$

Where V₁ and V₂ are respectively velocities before and after the enlargement and g is the acceleration due to gravity.

34. In a laminar flow, Reynolds number is

- (a) less than 4000.
- (b) more than 2000.
- more than 2000 but less than 4000. (c)
- (d) less than 2000.

The main function of a surge tank is

- to regulate the flow in penstock.
- to increase the storage capacity of the reservoir. (b)
- (c) to absorb water hammer pressures.
- (d) to create water hammer action.

36.	When	the depth of flow changes abrupt	tly ove	er a short distance in a free surface flow, the
W		s known as uniform flow	(b)	spatially varied flow
	(a)	gradually varied flow	(d)	rapidly varied flow
	(c)		8 8	
37.	(a) (b) (c)	ow in open channels, uniform flow a constant slope of channel bottom a constant depth of flow. a changing depth of flow.	is cha	aracterized by
	(d)	none of the above.		
38.	The h	ydraulic mean depth is given by		= 2
	7.3	<u>P</u>	(b)	$\frac{\mathbf{p}^2}{\mathbf{r}}$
	(a)	A	(0)	A
	(c)	A	(d)	$\sqrt{\frac{A}{P}}$
	(c)	P	(4)	V P
39.	Fort	he best rectangular section		
37.	(a)	y = b/3	(b)	y = b
	(c)	y = b/4	(d)	y = b/2
	2000 10	<u></u>		
40.		hydraulic jump occurs when		
	(a)	the bed slope is steep.	1.2	المستفتاء ا
	(b)	the flow changes from super critic	cal to	sub critical.
	(c)	the flow changes from sub-critica	al to su	iper critical.
	(d)	the flow is critical.		
41.	Cinc	olletti weir is a trapezoidal weir hav	ing si	de slope of
71.	(a)	1 horizontal to 2 vertical	(b)	4 horizontal to 1 vertical
	(c)	1 horizontal to 4 vertical	(d)	1 horizontal to 3 vertical
			• 20022000	at a lith will along is colled
42.	The	surface profile lying in zone 1 of a	chann	de with mild slope is called
	(a)	C ₁ profile	(b)	draw down
	(c)	M ₂ profile	(d)	M ₁ profile
				I'm at a with impropred depth is
43.			ing in	the upstream direction with increased depth is
	call		(b)	negative surge
	(a)	hydraulic bore	(d)	a 50 mars a 100 mars and 100 mars
	(c)	positive surge		
44.	. The	present population of a commun	nity is	28000 with an average water demand of 150
	1	The existing water treatment pla	nt has	a design capacity of 6000 m ³ /d. It is expected
	that	the population will increase to 4	4000 (during the next 20 years. The number of years
	froi	n now when the plant will reach	its de	esign capacity, assuming an arithmetic rate of
	pop	ulation growth, will be		
	(a)	5.5 years	(b)	Value of the second sec
	(c)		(d)	
Ser	ies-B	-	6	BAC-31
23.				
		e a		

45.	Water samples (S ₁ and S ₂) from two different sources were collected for the measurement					
	of dissolved oxygen (DO) using modified Winkler method. Samples were transferred to 300 mL BOD bottles. 2 mL of MnSO ₄ solution and 2 mL of alkali-iodide-azide reagents were					
	added to each bottle containing the sample and mixed. Sample S, developed a white					
	precipitate, whereas sample S ₂ developed a brown precipitate. In reference to these					
	observations, the correct statement is					
	(a) Both the samples were devoid of DO					
	(b) Sample S ₁ was devoid of DO while sample S ₂ contained DO					
	(c) Sample S ₁ contained DO while sample S ₂ was devoid of DO					
	(d) Both the samples contained DO					
16						

46. The turbidity of surface water is measured with the help of a turbidity meter – an instrument measuring the intensity of light scattered by suspended material present in water. The turbidity value so obtained is expressed in the units of

(a) CFU

(b) FTU

(c) JTU

(d) NTU

47. Hardness of water is measured by titration with ethylene-di-amine-tetra-acetic acid (EDTA) method using

- (a) Eriochrome black T indicator
- (b) Ferroin indicator
- (c) Methyl orange indicator
- (d) Phenolphthalein indicator

48. The design parameter of a flocculation unit is given by a dimensionless number Gt, where G is the velocity gradient and t is the detention time. Values of Gt ranging from 10⁴ to 10⁵ are commonly used, with t ranging from 10 to 30 minutes. The most preferred combination of G and t to produce smaller and denser flocs is

(a) large G values with short t

(b) large G values with long t

(c) small G values with short t

(d) small G values with long t

49. Particles whose surface properties are such that they aggregate, or coalesce, with other particles upon contact, thus changing size, shape and perhaps specific gravity with each contact, are called

(a) colloidal particles

(b) discrete particles

(c) flocculating particles

(d) suspended particles

50. Two particles are released in water at the same time. Particle A has a diameter d_A of 0.45 mm. Particle B has a diameter d_B of 0.90 mm. Assuming equal densities for both the particles and laminar flow conditions, the ratio of the terminal settling velocity of particle A to that of particle B will be

(a) 4.00

(b) 2.00

(c) 0.50

(d) 0.25

BAC-31

7

Series-B

- 51. Assertion (A): A discrete particle (having diameter d_o) settling in a circular sedimentation tank follows a parabolic path.
 - **Reason (R)**: The downward settling velocity (v_0) of the discrete particle (having diameter d_0) in the circular sedimentation tank do not change with time.

Codes:

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true but (R) is NOT a correct explanation of (A).
- (c) (A) is true, but (R) is false.
- (d) (A) is false, but (R) is true.
- 52. Assertion (A): A small quantity of ammonia is added to water before carrying out disinfection using chlorine.
 - **Reason** (R): Chloramines are persistent disinfectant, which provides continued protection against regrowth of microorganisms in the water distribution system.

Codes:

Series-B

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true but (R) is NOT a correct explanation of (A).
- (c) (A) is true, but (R) is false.
- (d) (A) is false, but (R) is true.
- 53. Match List-I (Equation/method) with List-II (Application) and select the correct answer using the codes given below the lists:

List-I List-II (Application) (Equation/Method) Frictional head loss estimation in pipe flow Manning's Equation 1. A. Darcy-Weisbach Equation 2. Domestic sewer design B. C. Hardy Cross Method 3. Storm water sewer design 4. Water distribution system design D. Rational Method Codes: D В C A 2 1 4 3 (a) 4 3 2 1 (b) 3 2 1 (c) 2 (d) 3 1

BAC-31

- 54. Assertion (A): Inverted siphons normally include multiple pipes and an entrance structure designed to divide the sewage flow among them so that the velocity (at least 0.9 m/s) in those pipes in use will be adequate to prevent deposition of solids.
 - **Reason (R)**: A single pipe of smaller diameter may be enough to maintain the required velocity at the minimum flow, but the velocity at peak flow will produce very high head losses leading to damage of the pipe itself.

Codes:

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true but (R) is NOT a correct explanation of (A).
- (c) (A) is true, but (R) is false.
- (d) (A) is false, but (R) is true.
- 55. A combined sewerage system is designed to carry
 - (a) domestic sewage and industrial wastewaters together.
 - (b) storm water and domestic sewage together.
 - (c) industrial wastewaters and storm water together.
 - (d) domestic sewage only.
- **56.** In a circular sewer of diameter D, if the wetted perimeter is $\frac{\pi D}{3}$, the depth of flow will be equal to

(a) 0.25 D

(b) 0.50 D

(c) 0.75 D

- (d) 1.00 D
- 57. 3 mL of wastewater containing no dissolved oxygen is mixed with 297 mL of dilution water containing 8.6 mg/L of dissolved oxygen in a 300 mL BOD bottle. After a 5-day incubation at 20 °C, the dissolved oxygen content of the mixture is 5.4 mg/L. The BOD₅ of the wastewater is

(a) 317 mg/L

(b) 320 mg/L

(c) 950 mg/L

- (d) 960 mg/L
- 58. An analysis for determination of solids in the domestic sewage was carried out as follows:
 - (1) A crucible was dried to a constant mass of 62.485 g.
 - (2) 50 mL of a well-mixed sample was taken in the crucible.
 - (3) The crucible with the sample was dried to a constant mass of 65.020 g in drying oven at 104 °C.
 - (4) The crucible with the dried sample was placed in a muffle furnace at 600 °C for an hour. After cooling, the mass of the crucible with residues was 63.145 g. The concentration of organic fraction of solids present in the sewage sample is

(a) 13200 mg/L

(b) 33800 mg/L

(c) 37500 mg/L

(d) 50700 mg/L

BAC-31

9

Series-B

59	9. Ch	emical dichro	Oxyg mate n	en De	mand (COI	D) of a	a waster rous an	water containing organic matters is nmonium sulphate solution using	estimated
	(a)				ck T indica		(b)	Ferroin indicator	
	(c)				indicator		(d)	Phenolphthalein indicator	
a.	(0)	1,10						•	
60	ch ch sec	annel ty amber. ction at ction of ction sh	The of the control of	rizont contro nd of hanne oe	al-flow griulled horizonthe channeles. If the channeles.	t cham intal v l. The	nber irre relocity shape o is made	rizontal velocity at approximately 0.3 espective of variations in flow rate the is achieved by providing a velocity of velocity control section is dependent of a rectangular section, the velocity control section is dependent of a rectangular section.	rough the ty control ent on the
	(a)		narp-c				(b)	an inboard weir	
	(c)) ap	roport	ioning	weir		(d)	an ogee weir	
6					cess is desig				
	(a		10.00	10-01	owth phase			nism.	
	(b	100 N-50	6000		se of micro		-		
	(c	-	60 matri	0.000	se of micro				
	(d) sta	tionar	y grow	th phase of	micro	organis	sm.	
6		atch Lodes giv				t–∏ (I	Definition	ons) and select the correct answer	using the
			Li	st–I				List–II	
			(Te	rms)				(Definitions)	
i.	A	. Co	ncentr	ated S	uspension	1.	change	e size, shape and specific gravity to with time.	
	В	. Flo	cculat	ing Pa	articles	2.		entration of particles is not suffi significant displacement of water	
	C	. Dil	ute Su	ispens	ion	3.		e surface properties are such the gate or coalesce with other particlet.	
	D	Di:	screte	Partic	les	4.		eles are close enough together so the ity field overlaps with those of neighbors.	
r	C	odes :							
		A	В	\mathbf{C}	D				
×	(a	a) 2	1	4	3				
	(1	b) 4	3	2	1 ,				
	(2)	3	4	1				
	(d) 4	1	2	3				
	Series-I						10		BAC-31
	oci ics-I	,			¥				
1							15		
1 8		•						*	

63.	Assert	large, shallow earthen to natural purification proc	oasin cesses occu	in which sewage is retained long enough for to provide the necessary degree of treatment. irs in the presence of oxygen, which is largely
	Codes			•
		Both (A) and (R) are true and (R) is	a tha i	compet audiomation of (A)
		Both (A) and (R) are true but (R) is	SINO	a correct explanation of (A).
	200132	A) is true, but (R) is false.		
	(d) (A) is false, but (R) is true.		e to the second of the second
CA	The Lie		4_41	£.11
64.	100	ghest power-to-weight ratio among		
	- 1 f	Car	(b)	Truck
	(c) N	Motorcycle	(d)	Bicycle
65	The sto	anderd lone width in multi lone roo	do on	nor IDC in highways
05.		indard lane width in multi-lane roa 3.6 m		
		works services	(b)	5.75 m
	(c) 7	7.0 m	(d)	3.5 m
66.		videning on the horizontal curves i	s pro	vided for
		Accommodating off-tracking.		
	- E S - 10-	To counter various forces at sharp t	turns.	
		For extra safety.		
	(d) N	None of these.		
67.	+ 3.5% taken a	 is greater than the curve length s per IRC standard, is 		vertical curve (with tangent slopes +0.5% and curve length when the rest other factors are
		266 m	(b)	200 m
	(c) 1	.75 m	(d)	None of these
68.	In a fla	wihle personent the leron heless the		our form in
vo.		xible pavement the layer below the	850,75098805	
	10. 10.		(b)	Sub-base
	(c) E	Base	(d)	None of these
69.	Bitume	n is obtained from		
		Destructive distillation of coke		
		Distillation of petroleum		
		Fractional distillation of petroleum		
	(d) N	Aixing solvents in tar		
	700 7000		100	

70. In a flexible pavement, the following four materials with the CBR values given are available: 80%, 60%, 15% and 4%. Indicate the order (top to bottom) in which the materials are to be placed for making a good pavement

(a) 4%, 15%, 60% 80%

(b) 4%, 80%, 15%, 60%

(c) 80%, 60%, 15%, 4%

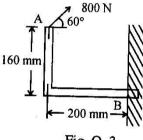
(d) 4%, 60%, 80%, 15%

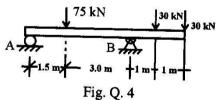
71.		lly a permanent way comprises of		•	
	(a)	rails, sleepers, ballast cushion and		pallast murum.	
	(b)	rails, sleepers and ballast cushion			
	(c)	rails, sleepers, ballast cushion and	l sub g	grade.	
	(d)	rails, sleepers, sub ballast murum	and s	ıbgrade.	
72.	The	gauge widths (in m) for broad, stan-	dard a	nd narrow gauges respectively are	
	(a)	1.767, 1.650, 0.760	(b)	1.676, 1.500, 0.676	
	(c)	1.676, 1.435, 0.762	(d)	1.876, 1.656, 0.800	
73.	The	gauge width (in m) for a metre gauge	je.	ž	
,	(a)	0.760	(b)	1.00	
	(c)	1.656	(d)	None of these	
	(0)	1.000	(4)	Trone of these	
74.	The	number of crossing indicates the			
	(a)	number of rails that criss-cross a j		•	
	(b)	angle between main rail and cross	-		
	(c)	number of sleepers all through the		•	
	(d)	number of sleepers all through connecting rail length.	the	crossing plus a number depending	on the
75.	In a	broad gauge track with 1 in 8 turnor	ut the	curve lead (in m) is	
	(a)	17.00	(b)	34.00	
	(c)	14.25	(d)	28.49	
76.	The	component in the airport system wh	nere th	e aircrafts land/take off	
	(a)	Apron	(b)	Taxiway	
	(c)	Runway	(d)	None of these	
	(0)	Kumuy	(4)	Trone of these	
77.	The	external aid for en route overwater	naviga		
	(a)	Doppler navigation	(b)	Inertial Navigation	
	(c)	Celestial navigation	(d)	Long range navigation	
78.	A ci	rcuit/loop in a construction network	repre	sents	
	(a)	cyclic pattern of activities	(b)	illogical interpretation of activities	
	(c)	Routine maintenance activities	(d)	None of these	
79.		ammy activity is introduced to			
	(a)	for getting logical dependencies	2		
	(b)	make the network diagram look e	legant		
	(c)	make network efficient		·	
	(d)	None of these			
					D. C. C.

80.	A cri	itical path is essentially used to find	d of	f a project
	(a)	total float	(b)	interfering float
	(c)	free float	(d)	completion time
81.	Criti	cal Activities are those that have	16	e.
	(a)	zero float time	(b)	infinite float time
	(c)	small but negligible float time	(d)	none of these
		li-		
82.	Prog	ram evaluation and review techniq	jue assu	imes that activity completion times are
	(a)	deterministic	(b)	time dependent
	(c)	Probabilistic	(d)	Fuzzy
83.	com	building a culvert across a road, pletion were given as 4, 5, 7, dance time (in the same order) of co	lays res	simistic, pessimistic and most likely times for spectively. The mean or expected value and on of this activity in days are
	(a)	5, 4	(b)	5.17, 0.25
	(c)	5.33, 4	(d)	5.33, 0.50
84.	Eco	nomy of scale exists when		
	(a)	Fixed and variable costs are near	rly equa	al.
	(b)	Fixed costs are high compared to	o variat	ple costs.
	(c)	Fixed costs are low compared to	variab	le costs.
	(d)	No specific relation between fixe	ed and	variable costs.
85.	The	worth of an infrastructural asset ch	nanges	with time due to
	(a)	inflation/deflation	(b)	utility it provides
	(c)	Both (A) and (B)	(d)	None of these
86.	The 10%	-	valuec	1 2 years ahead, with an annual interest rate of
	(a)	Rs. 121.00 cr	(b)	Rs. 82.64 cr
	(c)	Rs. 100 cr	(d)	Rs. 110 cr
87.	Var	iable costs refer to		•
	(a)	cost incurred for use/operation.		
	(b)	fixed expenses irrespective of us	se/oper	ation.
	(c)	costs that vary with time.		e e
	(d)	none of these.		
BAC	C-31		13	Series-B

]]

- 88. The base unit of length, mass and time in International system of units are
 - (a) metre, kilonewton and second
 - (b) metre, kilogram and minute
 - (c) metre, kilogram and second
 - (d) milimetre, Newton and second
- 89. Varignon's theorem of moments states
 - (a) arithmetical sum of the moments of two forces about any point, is equal to the moments of their resultant about that point.
 - (b) arithmetical sum of the moments of the forces about any point in their plane, is equal to the moment of their resultant about that point.
 - (c) algebraic sum of the moments of the forces about any point in their plane, is equal to the moment of their resultant about that point
 - (d) algebraic sum of the moments of two forces about any point, is equal to the moment of their resultant about that point.
- 90. A force of 800 N acts on a bracket as shown in Fig. Q. 3. The moment of the force about B is equal to




Fig. Q. 3

(a) 203 N-m

(b) 230 N-m

(c) 302 N-m

- (d) 320 N-m
- 91. Three loads are applied to the beam as shown in Fig. Q. 4. Neglecting the weight of the beam, the vertical reactions at A and B are

- (a) 30 kN and 105 kN
- (b) 35 kN and 100 kN
- (c) 105 kN and 30 kN
- (d) 100 kN and 30 kN

- 92. A 20-Mg rail road car moving at a speed of 0.50 m/s to the right collides with a 35-Mg car which is at rest. If after collision the 35-Mg car is observed to move to the right at a speed of 0.30 m/s, then the co-efficient of restitution between the two car is
 - (a) 0.56

(b) 0.65

(c) 0.55

(d) 0.66

93. The mass moment of inertia of a slender roof length 'l' and mass 'm' with respect to axis perpendicular to the rod and passing through one end of the rod is

(a) $ml^2/4$

(b) $m^2 l/3$

(c) $ml^2/3$

(d) $m^2 l^2 / 3$

94. In portal frame with columns of same height and section having fixed base, the sum of the displacement factors of column in Kani's method is

(a) -2.0

(b) -1.5

(c) -1.0

(d) -0.5

95. Match List-I with List-II and select the correct answer using codes given below:

List-I	List-II
Type of beam with loading	Maximum support moment
A 2	$1 \qquad \frac{5 \text{ w}l^2}{96}$
B W	$2 \qquad \frac{11 \text{ w}l^2}{192}$
C 1 W W	$3 \frac{wl^2}{12}$
w/m /	$4 \frac{wl^2}{20}$

Codes:

A B C D

(a) 4 3 1 2

(b) 4 1 2 3

(c) 3 4 1 2

(d) 3 4 2 1

96. Match List-II with List-II and select the correct answer using given codes:

List-I	List-II
Type of section on which shear force 'V' acting	Maximum shear stress across the section
A T d	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 \qquad \frac{9v}{4 d^2}$
$C \qquad \bigwedge_{b \to b} \stackrel{\uparrow}{\downarrow}$	$3 \qquad \frac{16 \text{ v}}{3 \pi \text{d}^2}$
	$4 \qquad \frac{3 \text{ V}}{2 \text{ bd}}$

Codes:

A B C D

- (a) 1 4 3 2
- (b) 4 2 1 3
- (c) 1 2 3 4
- (d) 4 3 1 2

97. The cantilever beam AB with loading is shown in Fig.Q. 10. The deflection at the free end B, will be zero, if the value of R is

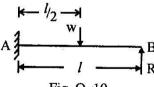


Fig. Q. 10

(a) $\frac{12 \text{ w}}{32}$

(b) $\frac{8 \text{ w}}{32}$

(c) $\frac{15 \text{ w}}{32}$

(d) $\frac{10 \text{ w}}{32}$

Series-B

16

BAC-31

98. The movable bracket shown in Fig. Q. 11 may be placed at any height on the 60 mm diameter pipe. If the coefficient of static friction between the pipe and bracket is 0.25, then minimum distance x at which the load W can be supported (neglecting the weight of bracket) is

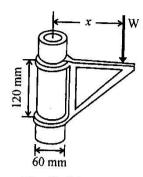


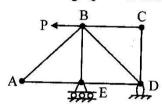
Fig. Q. 11

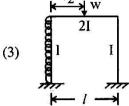
(a) 200 mm

(b) 240 mm

(c) 250 mm

- (d) 220 mm
- 99. A pin-jointed simple truss is shown in Fig. Q. 12. In which the zero force members are




Fig. Q. 12

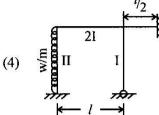

- (a) AB, BC, CD and DE
- (b) BC, CD, DE and BE
- (c) AB, BC, CD and AE
- (d) AB, CD, BD and DE
- 100. The flexibility matrix of the cantilever shown in Fig. Q. 13 is

Fig. Q. 13

- (a) $\frac{l}{6EI} \begin{bmatrix} 3l & 2l^2 \\ 2l^2 & 6 \end{bmatrix}$
- (b) $\frac{l}{6EI} \begin{bmatrix} 2l^2 & 3l \\ 3l & 6 \end{bmatrix}$
- (c) $\frac{l}{6EI} \begin{bmatrix} 3l & 6 \\ 3l & 2l^2 \end{bmatrix}$
- (d) $\frac{l}{6EI} \begin{bmatrix} 6 & 3l \\ 3l & 2l^2 \end{bmatrix}$

Codes:

- 1 and 2 (a)
- (c) 1 and 4

- 2 and 3 (b)
- 2 and 4 (d)

102. A motorist in travelling on a curved section of highway of radius 750 m at a speed of 100 km/h. The motorist suddenly applies the brakes. If after 8 second, the speed has been reduced to 75 km/h, then the acceleration of the automobile immediately after the brakes have been applied is

 1.351 m/s^2 (a)

(b) 1.135 m/s^2

 1.531 m/s^2 (c)

(d) 1.315 m/s^2

103. A three hinged parabolic arch with hinged supports at the same level and third hinge at the central rise 'h', is subjected to uniformly distributed load of w/m throughout its horizontal span, 'l'. The moment and horizontal thrust at quarter span are respectively

(a)
$$\frac{wl^2}{8}$$
 and $\frac{wl^2}{8h}$

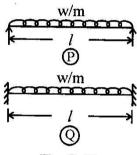
(b)
$$\frac{wl^2}{8h}$$
 and $\frac{wl^2}{8}$
(d) 0 and $\frac{wl^2}{8h}$

(c)
$$\frac{wl^2}{8h}$$
 and $\frac{wl^2}{8h}$

(d) 0 and
$$\frac{wl^2}{8h}$$

104. In a simply supported beam subjected to the action of a train of moving loads, the bending moment at a given section maximizes when

- the total load acting on the portion of the beam left to the section is equal to that acting on the portion of the right to the section.
- the average load acting on the portion of the beam left to the section is equal to that (b) acting on the portion of the beam right to the section.
- the section and the C.G. of the load system are equidistant from the center of the (c)
- the section and the center of the span are equidistant from the C.G. of the load (d) system.


105. Match List-II with List-II and select the correct answer using codes as given below:

List-I	List-II
Type of beam with type of loading	B.M. diagram
A THE	1
в Т	2
c frame	3
D Juman	4

Codes:

- A B C D
- (a) 2 4 3 1
- (b) 3 4 1 2
- (c) 4 2 3 1
- (d) 2 3 4 1

106. The ratio of maximum deflection of beam 'P' to maximum deflection of beam 'Q' as shown in Fig. Q. 19 is

- Fig. Q. 19
- (a) 2

(b) 3

(c) 5

(d) 7

107. The bending moment of the conjugate beam has the same value of the function of corresponding real beam known as

(a) slope

- (b) shear force
- (c) bending moment
- (d) deflection

BAC-31

108. The conjugate beam for the real beam shown in Fig. Q. 21 is

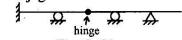
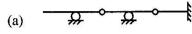



Fig. Q. 21

(d) 1 - A - A - A

109. The ordinates of the influence line for support moment of a cantilever beam of length 'l' at free end and support are

- (a) l and -l respectively
- (b) zero and zero respectively
- (c) zero and l respectively
- (d) none of the above

110. The ratio of shear stress and shear strain of an elastic material is termed as

- (a) Modulus of Rigidity
- (b) Young's Modulus
- (c) Modulus of Elasticity
- (d) None of the above

111. Match List-I with the List-II and select the correct answer using given codes:

List-I

List-II

(Euler's Formula)

(End conditions of long column)

$$A \qquad P = \frac{2\pi^2 EI}{l^2}$$

$$B \qquad P = \frac{\pi^2 EI}{4l^2}$$

2. Both ends fixed

$$C \qquad P = \frac{\pi^2 EI}{l^2}$$

3. Both ends hinged

$$D P = \frac{4\pi^2 EI}{I^2}$$

4. One end fixed, other end hinged

Codes:

A B

 \mathbf{C} \mathbf{D}

- (a) 4 1 3
- (b) 3 1 2 4
- (c) 4 2 3 1
- (d) 3 4 2 1

112. The magnitude of the concentrated load to be applied at the free end B of a cantilever beam show in Fig. Q. 25 to produce deflection 'Δ' at that point (B) is

Fig. Q. 25

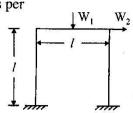
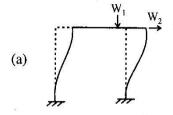
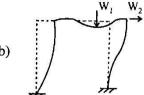
(a)
$$\frac{4 \text{EI } \Delta}{t^3}$$

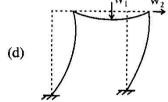
(b)
$$\frac{3EIA}{13}$$

(c)
$$\frac{2EI}{I^2}$$

(d)
$$\frac{3EI \Delta}{I^3}$$

113. A portal frame is shown in Fig. Q. 26. The deflected shape of the frame for constant EI will be as per


Fig. Q. 26

(b)

(c)

114. Match List-I with List-II and choose the correct answer from given codes:

List-I

- A Maximum/minimum principal stress 1. reaches the elastic limit stress in simple tension/compression.
- B Maximum/minimum principal strain 2. equal to the maximum / minimum strain at the elastic limit in simple tension/compression
- C Maximum shear stress must equal the 3. maximum shear stress at elastic limit in simple tension.
- D Strain energy per unit volume in it 4. equals the maximum strain energy per unit in the material at elastic limit in simple tension.

List-II

- . Coulomb guest's theory of elastic failure.
- 2. St. Venant's theory of elastic failure.
- 3. Rankine's theory of elastic failure.
- Haigh's theory of elastic failure

Codes:

	A	B	\mathbf{C}	D
(a)	2	3	4	1
(b)	4	3	2	1
(c)	1	2	4	3
(d)	3	2	1	4

115. For the given S.F. and B.M. diagrams as shown in Fig. Q. 28, the appropriate beam with loading is as in

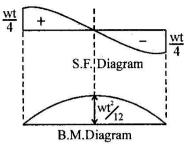
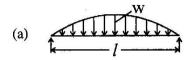
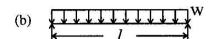
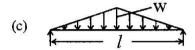
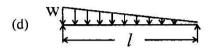






Fig. Q. 28

116. The inherent property of a body which offers reluctance to change its state of rest or uniform motion, is

(a) momentum

(b) inertia

(c) mass

(d) weight

117. Knowing M, I, R, E, F and Y are the bending moment, moment of inertia, radius of curvature, modulus of elasticity, stress and depth of neutral axis at a section in flexure, the

(a)
$$\frac{M}{I} = \frac{E}{R} = \frac{Y}{F}$$

(b)
$$\frac{M}{I} = \frac{R}{E} = \frac{F}{Y}$$

(c)
$$\frac{I}{M} = \frac{R}{E} = \frac{F}{Y}$$

(d)
$$\frac{M}{I} = \frac{EE}{R} = \frac{F}{Y}$$

118. A grading curve is

- (a) the results of a sieve analysis.
- (b) a plot of mass retained in each sieve against particle size.
- (c) the plot of cumulative fraction smaller than a given size against the logarithm of that size.
- (d) none of the above.

119. Aeolian soil is a

- (a) soil occurring in flood plain
- (b) glacial clayey soil
- (c) soil deposited in lake
- (d) wind-borne soil

120. A soil sample has a shrinkage limit of 10% and specific gravity of soil solids as 2.7. The porosity of the soil at shrinkage limit is

(a) 21.2%

(b) 27.0%

(c) 73.0%

(d) 78.8%

Space For Rough Work

Space For Rough Work