Booklet Code:

(1) Answer all questions. Note:

- (2) Each question carries I mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Answer Sheet provided separately by Completely shading with Ball Point Pen (Black) only.
- (4) The OMR Answer Sheet will be invalidated if the circle is shaded using Pencil or if more than one circle is shaded against each question.

Section A: Electrical Engineering

- Millman's theorem yields equivalent 1.
 - Impedance or Resistance (1)
- (2) Current source

(3) Voltage source

- (4) Voltage or Current source
- For the network shown in Fig. 1, when I = 0, V = 20 V and when R = 0, I = 10 A. If now R = 3 Ω 2. what is the value of the current I?

- (1) .6.67 A
- (2) 6.0 A
- (3) 4.0 A
- (4) 10.0 A
- In a pure resistive circuit, the average power Pavg is _____ the peak power Pmax. 3.
 - (1) Double
- (2) One-half of
- (3) One-fourth
- (4) Equal to
- When the power transferred to the load is maximum, the efficiency of the power transfer is : 4.
 - (1) 25%
- 75% (2)
- (3) 50%
- (4) 100%
- The source impedance $Z_s = (6 + j 8) \Omega$ in the circuit shown (Fig. 2). Maximum real power is 5. transferred to the load impedance when ZL is equal to

(1) $(6+j8)\Omega$

(3) 10 Ω

(4) $(6-j8)\Omega$

(EEE)

3-A

P.T.O.

Booklet Code

Fig. 3 shows two coils with coupling coefficient of 0.6, $L_1 = 0.4$ H and $L_2 = 2.5$ H. The mut-6.

inductance M is equal to

- (1) 0.6 H
- (2) 2.9 日
- (3) 2.1 H
- 1.45 H (4)

In dc machines, the armature windings are placed on the rotor because of the necessity for 7.

- (1) electromechanical energy conversion (2) generation of voltage
- (3) commutation

development of torque

The fall in speed of a dc generator due to increase in load can be corrected by 8.

- cooling the armature.
- (2) increasing the excitation.
- reducing the load voltage.
- (4) increasing the input to the prime mover.

Two transformers, each having iron loss of Pi watts and full-load copper loss of Pc, are put to 9. back to back test and full-load current is allowed to flow through the secondaries, the total input power will be

- $(1) 2 P_i$
- (2) 2 P_c
- (3) $P_i + P_c$ (4) $2(P_i + P_c)$

10. The desirable properties of transformer core material are

- low permeability and low hysteresis loss.
- high permeability and high hysteresis loss.
- (3) high permeability and low hysteresis loss.
- (4) low permeability and hysteresis loss.

In a synchronous machine, if the field flux axis ahead of the armature field axis in the direction of rotation, the machine is operating as

- synchronous motor
- (2) synchronous generator

- (3) asynchronous motor
- (4) asynchronous generator

12. In an induction motor if the flux density is reduced to one-half of its normal value then the torque will

(1) reduce to one-half

reduce to one-fourth

(3) remain unchanged

(4), increase four times

13.	u.	-	\mathbf{S}		Booklet Code	: A
13,	(1)	w can the steady-state erro By decreasing the type of	r in a system be re	educed?		
	(3)	and the type (Of System (2)	D '	system gain	
٠.		static e	error constant (4)	 By increasing 	the input	
14.	(1) (2) (3) (4)	e purpose of guard ring in to reduce the earth capacitation increase the earth capacitation reduce the transmission	ransmission lines ince of the lowest tance of the lowe lines losses.	is to		
15	. Lo	ad flow studies involve solv	ing simultaneous			
	(1)	linear algebraic equation	s. (2)	non-linear alge	braic equations.	
	(3)	linear differential equation	ons. (4)		erential equations.	
16	. w	hich portion of the power sy	stem is least pron			
	(1)		itchgear (3)		(4) overhead lin	es
17	Ga	the solution of load-flow ouss-Seidal (GS) method, bec	cause			
	(1)	the time taken to perform time taken in the GS meth	one iteration in the	ne NR method is	less when compared	to the
	(2) (3)	The state of the s	ed is not independe ed in the NR meth	nt of the size of the od is more when	e system in the NR n compared to that in	nethod. the GS
	(4)	convergence characteristic	s of the NR method	are not affected b	y the selection of sla	ck bus.
18.	Αv	oltage source inverter will h	ave better perfort	nance if its		
	(V)	load inductance is small a	nd source inducta	nce is large.		
	(2)	both load and source indu				
	(3) (4)	both load and source inductance is large ar	ctances are large.			
19.	is ad	phase wound rotor induction of the circuit. A resistance of ditionally connected during ms. The average resistance 26/5 Ω (2) 24/5	OFF periods of	in the rotor circu	it and a resistance	of 4 Ω
	(1)	26/5 Ω (2) 24/5	Ω (3)	18/5 Ω	(4) $16/5 \Omega$	12 15
(EE	E)		5-A			P.T.O.

Booklet Code :

- 20. The main function of economiser of a boiler plant is to
 - (1) increase steam production
- (2) reduce fuel consumption
- (3) increase steam pressure
- (4) increase life of the boiler
- A dc chopper is fed from a constant voltage mains the duty ratio of chopper is progressively increased while the chopper feeds an RL load. The per unit current ripple would
 - (1) increase progressively
 - (2) decrease progressively
 - (3) decrease to a minimum value at $\alpha = 0.5$ and then increase
 - (4) increase to a maximum value at $\alpha = 0.5$ and then decrease
- 22. The Boolean expression Y(A, B, C) = A + BC is to be realized using 2-input gates of only one type. What is the minimum number of gates required for the realization?
 - (1) 1
- (2) 2
- (3) 3
- (4) 4 or more
- 23. The output f of the 4-to-1 MUX shown in the Fig. 4 is

- (1) $\overline{xy} + x$
- (2) x + y
- (3) $\overline{x} + \overline{y}$
- (4) $xy + \overline{x}$

Fig. 5

24. For an n-channel MOSFET and its transfer curve shown in the Fig. 5, the threshold voltage is

- (1) 1 V and the device is in active region
- (2) -1 V and the device is in saturation region
- (3) I V and the device is in saturation region
- (4) -1 V and the device is in active region

(EEE)

6-A

- 25. The Common Mode Rejection Ratio (CMRR) of a differential amplifier (where A = differential gain, A_c = common mode gain)
- (2) $\frac{A_d A_c}{A_d}$ (3) $20 \log_{10} \frac{A_d}{A_c}$ (4) $20 \log_{10} \frac{A_c}{A_d}$
- 26. What is the Gray code word for the binary number 101011?
 - 101011 (1)
- (2) 110101
- (3) 011111

- Ideally, the damping torque should be
 - (1) Proportional to velocity of the moving system and operating current.
 - Proportional to the velocity of the moving system but independent of operating current. (2)
 - Independent of the velocity of the moving system and proportional to the operating current. (3)
 - Independent of the velocity of the moving system and operating current.
- An ac voltmeter using full-wave rectification and having a sinusoidal input has an ac sensitivity equal to
 - (1) 1.414 times dc sensitivity
- (2) dc sensitivity
- (3) 0.9 times dc sensitivity
- (4) 0.707 times dc sensitivity
- An electrodynamometer type wattmeter is connected (as shown in the given Fig. 6) in a 3-phase supply and having a 3-phase balanced load, E and I are the value of phase voltage and current and ϕ is the phase angle between them. The wattmeter reading will be

- (1) proportional to EI sin o
- (2) proportional to El cos φ
- (3) proportional to EI tan φ (4) zero
- 30. Three-pulse converter has a freewheeling diode across its load. The operating range of the converter is

 - (1) $0^{\circ} \le \alpha \le 150^{\circ}$ (2) $60^{\circ} \le \alpha \le 120^{\circ}$ (3) $30^{\circ} \le \alpha \le 150^{\circ}$ (4) $180^{\circ} \le \alpha \le 360^{\circ}$

(EEE)

7-A

r	
1	\mathbf{C}
1	•
1	

Booklet Coo

31.	The (1) (3)		(2) (4)	distilled water transformer oil
32.	The (1) (3)		(2) ² (4)	lagging the arc current by 90° lagging the arc current by 180°
33.	(1) (2) (3) (4)	located in the transformer tank itself connected in the pipe connecting mai		of transformer and conservator
34.	For (1) (2) (3) (4)	capacitor		
35.	(1)	e inrush current of a transformer at no loa at peak voltage value at half voltage value	(2)	ximum if the supply voltage is switched or at zero voltage value at 0.866 time voltage value
36.		positive, negative and zero-sequence dy-state condition always follow the relative $Z_0 < Z_1 < Z_2$ (2) $Z_1 > Z_2 > Z_0$	impeda	nces of a solidly grounded system under
37.	The (1) (3)	stability of the power system is not affe generator reactance	ected b (2)	y line reactance output torque
38.	The conr (1) (2) (3)	assumes accelerating power acting on ignores the effect of voltage regulator a	on of to achine the rot and gov	resistance and shunt capacitances. or as constant. vernor but considers the inherent demonstrance.
		during the first swing.	I mach	ine losing synchronism after it has survived

				[\mathbf{S}			Booklet C	ode : A
39.	Refle	ctor mirrors e	mploye	d for exploi	ting sola	energy ar	e called the	e	
	(1)	Mantle	(2)	Heliostats	(3)				
40.	The c (1) (2) (3) (4)	Total installed Total installed Total number Total installed Neither the in	d capaci of units d capaci	ty only. s only. ty and numb	er of unit	s as well.			
41.	The	load duration	curve fo	r unity load	factor wil	l be of			
	(Y)	Rectangular			(2)	Triangula	ar shape		
	(3)	L-shape			(4)	I-shape			
42.	The	knowledge of	diversit	y factor helps	s in comp	uting			
	(1)	Plant capacit			(2)	Average	load		
	(3)	Units (kWh)	generat	ed	(4)	Peak dem	nand		
43.	In p	arallel RLC re	sonance	circuit at res	sonance th	ne current v	vill be		
	(1)	Minimum		Maximum				Infinite	
44.	A tr	ansformer has	negative	voltage regi	ulation w	nen its load	power fact	or is	
		Zero	(2)	Unity	(3)	Leading			
45.	(1) (2) (3) (4)	Ratio of aver Factor used f	age dem for incre	and to maxin	tion to su	m of consu ınd.	mer's maxi	imum load.	
46.	The port (1) (3)		is irear (iie 0	non unif f conduct (2) (4)	or. Center	oution of cu	arrent in it a	and major
47.	In le	ead acid battery	the den	sity of acid i	ndicates t	ha			
	(4)	charge of the	battery	E-139 CL	(2)	level of a	hir		
	(3)	e.m.f. of the	battery		(4)		f the plates		
48.	Bre	aking capacity	of a circ	uit breaker is	s usually	expressed in	n tarms of		
	(1)	Ampere	(2)	Volts	(3)	MW	(4)	MVA	
(ER	EE)				9-A				P.T.O.

S

Booklet Code

	is used for heating non-conducting	g mate	rials.
49.	The current heating	(2)	Arc heating
	(1) Eddy current (3) Induction heating	(4)	Dielectric heating
50.	Spot welding is used for	(2)	Roughanding
	(1) Thin metal	(4)	Rough and irregular surface
	(3) Castings only	(+)	Thick sections
51.	For arc welding current range is usually		
	(1) 10 to 15 A (2) 30 to 40 A	(3)	50 to 100 A (4) 100 to 350 A
52.	According to the Routh Hurwitz stability c statement is correct?	riterio	n for a stable system, which of the following
	(1) Roots are in right half of the S plane		
	(2) Roots are in the left half of the S pla	ne	
	(3) Roots are in right half of the S plane		
	(4) Roots are in the left half of S plane as	nd on i	maginary axis
53.	If the gain of the open loop system is doub	led, the	gain margin
	(1) Is not affected	(2)	Gets doubled
	(3) Becomes half	(4)	Becomes one-forth
54.	Phase margin is the amount of angle to ma	ke the	system
	(1) Oscillatory (2) Stable	(3)	Unstable (4) Exponential
55.	Jan of a common-source IFE	T ampl	ifier depends up on its
	(1) input impedance	(2)	Amplification factor
	(3) Dynamic drain resistance	(4)	Drain load resistance
56.	A four-quadrant operation	II conVi	erters connected in
	(1) Series Series two fu	(2)	Paranci
	(3) Back to back	(4)	Series Cascade
57.	Oscillator independent of phase shift is		(4) All of these
	(1) Relaxation (2) Wein bridge	(3)	Clapp (4). All of these
(E	EE)		

- In a dual converter the circulating current
 - allow smooth reversal of load current but increases the response time.
 - (2) does not allow smooth reversal of load current, but reduces the response time.
 - (3) allows smooth reversal of load current with improved speed of response.
 - (4) flows only if there is no interconnecting inductor.
- A digital voltmeter has 4½ digit display the 1 V range can read upto
 - (1) 1000 -
- (2) 1.111
- (3) 1.999
- (4) 1999
- 60. For a short transmission line with r/x ratio of is 1.0, the regulation will be zero when the load power factor is
 - (1) Unity

(2) 0.707 lead

(3) 0.707 lag

- (4) Zero power factor lead
- 61. A battery consists of n series connected cells while voltage of each cell is v volts and capacity k. The voltage and capacity of battery is
 - Voltage of battery = n*v, Capacity of battery = Capacity of each cell
 - (2) Voltage of battery = n*v, Capacity of battery = n*Capacity of each cell
 - (3) Voltage of battery = v, Capacity of battery = n*Capacity of each cell
 - Voltage of battery = v, Capacity of battery = Capacity of each cell
- Torque angle 'δ' is the angle between
 - Rotor field axis and resultant field axis
 - (2) Stator field axis and rotor field axis
 - (3) Stator field axis and mutual field axis
 - (4) Stator field axis and resultant field axis
- Steady state power limit is

- (2) $\frac{EV}{X}\sin\delta$ (3) $\frac{EV}{X}\cos\delta$ (4) $\frac{EV}{X}\sin30^\circ$
- 64. Undamped frequency of oscillations of a synchronous machine is

- (1) $\left(\frac{P_{\gamma}}{M}\right)^{0.5}$ (2) $\left(\frac{P_{\gamma}}{M}\right)^{2}$ (3) $\left(\frac{P_{\gamma}}{M}\right)^{4}$ (4) $\left(\frac{P_{\gamma}}{4M}\right)^{2}$

(EEE)

11-A

P.T.O.

r		٦
н	CI	
ı	400	1
ı		1

Booklet Con

5.			Routh	's tabulation of	a four	th order system	are	
	84.1							
	s ³ 2	20		i lainn an	the ri	obt half of s-pla	ne is	
					(3)	ght half of s-pla	(4)	4
	(1)		(2)		` ′			
66.	A ne	gative sequence	relay i	is used for prote	ction (of		
		Generator.	'			Transformer	vion li	inge
	(3)	Motor			(4)	Long Transmiss	SIOILI	ines
67.	The	surge impedance	for ov	er head line is ta	iken a	S		
	(1)	10-20 ohms	(2)	50-60 ohms	(3)	100-200 ohms	(4)	1000-2000 ohms
68.	In ar	ac series RLC c	ircuit,	the voltage acro	ss R a	nd L is 20 V; vol	tage :	across L and C is 9
		voltage across Ri						
	(1)	7 V	(2)	12 V	(3)	16 V	(4)	21 V
69.	The	motor used for e	electric	traction is				
		D.C. shunt moto			(2)	D.C. compound	moto	or
	-(3)	D.C. series mo	tor		(4)	Synchronous m		
70.	Arc	resistance						
			increas	se in arc current	(25	decrease with ir	creas	se in arc current
		is independent				is independent of		
71.	Anı	unity feedback co	ontrol	system has oper				0 = 9 / [s(s + 1)]. Th
	dam	ping ratio ξ of th	e syste	em is	. тоор	transfer function	10(5)	(5-9)[5(5+1)]. In
		1.0	(2)		(3)	0.6	(4)	0.5
72.	Pow	er in the wind is	propo	rtional to			()	
		Wind velocity	рторо		(2)	(Wind velocity)	2	
		(Wind velocity))3		(4)	(Wind velocity/	2)	
73	In o	rder to regulate	steady	state error to ze				control system, one
, J.	emp	lovs	oteaay	State Circle to 2.	oro, n	a negative feed	back	control system, one
	_	Proportional co	ontrol		(2)	Integral control		
		Derivative cont			(4)	Proportional - D)eriva	tive control
74		•		circuit voltage	I = 6	short circuit	ciiva	= load voltage and
·	I = 1	oad current. At M	1axim	um Power Point	sc (MPF	for this PV cell	ent; V	= load voltage and
	400000	$V < V_{oc}$ and $I =$	_			$V < V_{oc}$ and $I < I$		
		$V = V_{oc}$ and $I =$			(4)	$V = V_{oc}$ and $I < I$	sc	
						oc and i	SC	

- 75. The closed loop transfer function of a control system
 - C(s) / R(s) = 1/(1+s)

The steady state value of output $c(\infty)$ for unit step input is equal to

- (1) 1.0
- $(2) \quad 0.5$
- (3) zero
- (4) 2
- 76. Fig. 7 shows an accurate equivalent circuit for a PV cell. For this cell

(1) $R_p = R_s$

(2) $R_p < R_s$

 $(3) \quad R_p > R_s$

- (4) Product of Rp and Rs is unity
- 77. The speed of a three-phase induction motor is controlled by variable voltage variable frequency control (i.e. keeping V/f constant). As the frequency is reduced, the slip at maximum torque
 - (1) Decreases

(2) Increases

(3) Remains constant

- (4) None of the above
- 78. An amplifier has a voltage gain of 120. To reduce distortion, 10% negative feedback is employed. The gain of the amplifier with feedback is
 - (1) 141
- (2) 92.3
- (3) 9.23
- (4) 1.41
- 79. The time base signal in Cathode Ray Oscilloscope (CRO) is
 - (1) A square wave signal
- (2) A sawtooth signal
- (3) A triangular wave signal
- (4) A sinusoidal signal
- 80. A control system having unit damping factor will give
 - (1) Oscillatory response

- (2) Undamped response
- (3) Critically damped response
- (4) No response

Booklet Code

Section B: General Awareness and Numerical Ability

81.	It looksi	t's going to rain. (2) as if	(3) altho	ugh (4)	supposing
82.	(2) As it was too(3) Owing to his(4) It was too dis	ork hard, you will wing hot, so I switched the good nature, he was litty for holding it with h	e air cooler on. ked by all. nands.		
83.	Most students hav studies and experi (1) into	e to try and earn extra rence the real world fo (2) down	r a while.	g a holiday job.	They turn their to
84.	In nothing	much happened at the (2) briefly	e meeting. (3) shor	t (4)	shortly
85.	Railway Minister (1) Arun Jaitley (3) Smriti Irani	visited Japan	(2) Sure	esh Prabhu nohar Parrikar	
86.	Former President very recently? (1) Alok Rawat (3) S.M. Vijayar		(2) Upo	n India (BCCI), endra Tripathy mohan Dalmiya	passed away
87.	PM Narendra Mo official visit to C			in China a	t Shanghai during his
88.	ISRO launched customer satellite	Multi Wa es through PSLV C-30 (2) AGNI	Launch Vehic	ele?	along with six foreign
89.	Which Kakatiya (1) Prola-1	ruler laid the foundati (2) Prola-2) Rudramadevi
90.	The famous shia (1) Muharram	festival of Qutub Shal (2) Ramzan		gana was nuroj (4) Bakrid
Œ	EE) '		14-A		

S Booklet Code	: A
1. Identify the birth place of 'Komaram Bheem'. (1) Jodehgat (2) Nirmal (3) Asifabad (4) Khanajipet	
92. The famous 'Telangana March' was held on (1) 3rd September, 2012 (2) 28th September, 2012 (3) 29th September, 2012 (4) 30th September, 2012	
93. In 10 years, A will be twice as old as B was 10 years ago. If A is now 9 years older the present age of B is	in B, the
(1) 19 years (2) 29 years (3) 39 years (4) 49 years	
94. If each side of a square is increased by 25%, then the percentage change in its area in (1) 35.25% (2) 42.35% (3) 56.25% (4) 63.45%	S
95. A trader mixes three varieties of groundnuts costing Rs. 50, Rs. 20 and Rs. 30 per la ratio 2:4:3 in terms of weight, and sells the mixture at Rs. 33 per kg. What perce	cg in the ntage of
profit does he make? (1) 8% (2) 9% (3) 10% (4) 11%	
96. A car complete a journey in 10 hours. He travels first half of the journey at the	e rate of
21 km/hr and second half at the fate (3) 230 km (4) 234 km (1) 220 km (2) 224 km	
97. Main memory is also called as (1) ROM (2) Hard Disk (3) RAM (4) PROM	
dans storage device can perform	
(1) Arithmetic of these	
d in computers, is made of	
() United	
(3) Graphite (3) Which of the following programming languages are considered as low level languages. (4) Prolog.	2
(2) C, C++	ger
100. Which of the follows (2) C, C++ (1) Basic, Cobol, Fortran (1) Prolog	
(1) Basic, Cooling (1) Holog (2) Assembly language (3) Assembly language	

15-A