	In pi	ane tabling inaccessible points material $lpha$	·(B)	Resection method
	(C)	Radiation method	, ,	Traversing method
2.	Inal	planimeter, when the tracing poin	t is moved a	llong a circle without rotation of the wheel
×		the circle is known as the		
	(A)	Prime circle		Zero circle
	(Ċ)	Ortho circle	(D)	Circum circle
3.	The l	ine joining points of equal elevati	on is known	as a
	(A)	Horizontal line	· (B)	Vertical line
	400	Contour line	. (D)	Level line
	<i>;</i>	-		
4.	The o	operation of levelling from the fin	ishing point	to the starting point at the end of a day's
		is known as	*	
	. (A) ·	Simple levelling	(B)	Longitudinal levelling
• . •	(C)	Cross-sectional levelling		Check levelling
5.	The l	ine of collimation and axis of the	telescope sh	ould
		coincide	(B)	be parallel
· ·	(C)	be perpendicular	(D)	be tangential
	;			
6.	The l	penchmark established by the sur	vey of India	is known as the
	(A)	Temporary bench mark	(B)	Permanent bench mark
		GTS bench mark	(D)	Arbitrary bench mark
	,		•	
7.		ne trapezoidal formula, for calcula med to be	ating area,	the line joining the top of the ordinates is
	(A) .	curved	(3)	straight
•	(C)	circular	(D)	parabolic
	. ,			

	holding capacity								
•	(ii)	Channels	left by deca	yed roo	nportant role in percolation of water				
	(A)	(i) only t	rue		(B)	(ii) only true	·		
•	S.	both (i) and (ii) are true			(D)	both (i) and (ii) are not true			
	ú		• •						
9.	The	gully in wh	nich erosion	is conti	nued is called		,		
	(A)	Dorman	t gully			Active gully	•		
	(C)	Dead gu	lly	•	(D)	Healed gully			
	•	•							
10.	Mat	ch the follo	wing:			•		· .	
		State of C			Property	,			
,	(a)	Stage 1	. •	1.	Healing	•			
	(b)	Stage 2		2.	Stabilization	. /			
`	(c)	Stage 3		3.	Formation	•			
•	(d)	Stage 4		4.	Initiation		•		
	,	(a) (t	o) (c)	(d) ⁻					
,	(A)	4 3		1				, ••	
•		4 3	. 1	2^{\cdot}					
	(C)	3 1	2	4		, .			
	(D).	3 2	1	4		-	` ,	* .	
								•	
11.	· Con	touring ref	ers to growi	ng of cr	ops or performi	ng of tillage ope	rations		
		across tl	ne contour o	f the ar	ea (B)	along the slop	e .	•	
	(C)		e wind direc		(D)	across the win			
								•	
12.	1 3775-	ich of the fo	allowing one	ration i	s associated to	vertical mulchin	1 9 ?		
14.		•	•		abbutated to	deep chiseling			
	(A)	mole dra	٠,	•	(D)	tie ridging	·		
	(C)	basin lis	oung .	•	(D)	ne mania			

(i) There exists a positive correlation between organic matter present in soil and its water

What do you infer from the following statements?

CEAGE/18

13.	Central Arid Zone Research Institute is located in							
•	(A)	Jaipur	(B)	Jaisalmer				
		Jodhpur	· (D)	Agra				
14.	The o	channels constructed across the slope	e for the	purpose of intercepting surface runoff are				
	calle			•				
		Diversion drains	. (B)	Relief drains				
	(C).	Grassed waterway	(D)	Field drains				
15.	On a	3 percent land slope, calculate the h	orizonta	l spacing of bunds in medium rainfall zone				
20.	(A)	90 m	. (B)	60 m				
		30 m	(D)	15 m				
	•	•						
1.0	XX71 .	ch of the following combinations is/ar	a correct					
16.		Bench terrace with inward slope		leavy rainfall areas				
	(i) (ii)	Bench terrace with level top		Medium rainfall areas				
	(iii)	Bench terrace with outward slope		ow rainfall areas				
•	(A)	(i) only	(B)	(ii) only				
	(C)	(iii) only		(i), (ii) and (iii)				
	" (O)		√ – ′					
	P713	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fa'anagia	m is tarmed as				
17.		susceptibility or vulnerability of soil	to erosio	Erodibility				
	(A)	Erosivity	(D)	Accretion				
	· (C)	EI_{30} index	(D)	Accietion				
	*							
18.	In E	$ m I_{30}$ method, the $ m I_{30}$ refers to						
•	(1)	maximum rainfall intensity of 30 n	ninutes	duration				
	(B)	rainfall depth of 30 mm						
•	(C)	kinetic energy of 30 minutes rainfa	all					
	(D)	maximum infiltration rate for 30 n	ninutes					
	,		•					
10	O1	easter wheel is a		,				
19.	Cosh	nocton wheel is a	(B)	flow measuring device				
	(0)	sediment sampler	· (D)	wind speed measuring device				
•	, (C)	velocity measuring device	(D)	wind speed measuring device				

0.	Whic	ch of the following pair	rs are correctly	matche	ed?
,	(i)	Soil wetness –	Relative water	er conte	ent of soil
	(ii)	Mass wetness -	Soil water co	ntent	
	(iii)	Volume wetness —	Soil water co	ntent o	n volumetric basis
,	(A)	(i) and (ii)		(B)	(i) and (iii)
	(C)	(ii) and (iii)	• •		(i), (ii) and (iii)
	ø			•	
1.	1 ha	-m equals	cubic mete	er.	• • • • • • • • • • • • • • • • • • • •
•	(A)	1,000		(D)	10,000
	(C)	5,000	•	(D)	50,000
		•	,		
2.	In ge	neral, the major comp	onents of wate	r reanir	ement of crops is
•	(A)	Pre-sowing irrigation	•	Toquit	ement of crops is
		Evapotranspiration	•	·	
	(C)	Leaching requireme	nt		•
•	(D)	Deep precolation fro	•	ıe.	
	,	,			
3.	Whic	h of the following is/or	ro ugod to moos		, .
<i>,</i>	(i)	h of the following is/ar Water meter	re used to meas	ure irri	gation water?
	(ii)	Current meter	,		
	(iii)	Dethridge meter		•	•
•	(A)	(i) only	•	(B)	(i) and (ii) only
	(C)	(i) and (iii) only			(i), (ii) and (iii)
•	,				(i), (ii) unu (iii)
Į.	Each	side of cipoletti weir l	na a alama (U .	Σ Λ α ἐ	·
Γ.	(A)	1:2	ias a stope (H.:		1.9
	. (62	1:4		(B)	1:3
			•	(D)	1:5
	·	a	. ,		
5.	· .	heet of water which o	verflows a weir	is calle	d
	(A)	jet		(B)	runoff
٠.	Con .	nappe		(D)	stream

26.		•	tment of i	rigatio	on water,	, the q	uantity of l	oleaching pow	der added i	n the
		er source is.			•	(D)				
	(A)		•			(B)	1.0 mg/lit			
		2.0 mg/lit		,	,	. (D)	3.0 mg/lit			
			,	,	. \		• •	•		
27.	Find	d out the dep	th of which	1 ha c	f rice fiel	ld can l	be irrigated	with a flow of	7.5 l/s in 8 l	ours.
	(A)	0.0216 cm	,		*	(B)	21.6 cm			٠
•	40)	2.16 cm			•	(D)	4.32 cm	:		
								•		
28.	Effic	ciency of Airl	ift pumps i	s abou	t	·	– per cent.		• .	,,
	(1)	3 0				(B)	50	•		
٠	(C)	70		, .	·	(D)	80			
	,	<i>.</i>		,	• .	` ,				
29.	Drasi	naga acaffiai	antiatha a	lanth a	f rreation d	bonion	off from a c	irron orion in		
		nage coeffici	ent is the c	tepun o	i water u	ramed	•	iven area m		
,	(A)	1 hour	•		•	(B)	1 day			
	(C)	1 minute	-		·	(D)	1 month		<i>s</i> •	
		·								
30.	Mate	ch the follow	ing:					, ,	•	
-		Property			Unit				•	
	` / `				,	17 ½	•			
	(a)	EC		1	(mmole	e/l) ^{/2}				
·	(b)	SAR	•	2.	ds/m	. ·		•		
	(c) .	RSC ESP		3.	per cen	t			•	
	(d)	ESF .	• .	4.	mc/l		•			,
		(a) (b)	(c)	(d)						•
	(A)	2 4	1	3	•		,			
	(B)	4 2	1	3 -	•					•
		2 1	4	3		,				•
	(D)	4 2	3	1		•		*		
	* /	_							•	