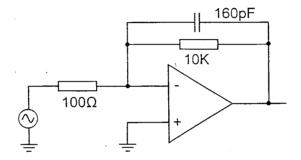
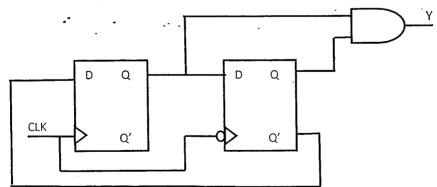


SET-A


2	A signal source with 100m wavelength is connected to the input terminals of a 150m long transmission line terminated in its characteristic impedance. The phase difference between the
	voltages at two ends of the transmission line in steady-state condition is:

a)	2π	b)	3 π
c)	4 π	d)	π

A charge $Q_2 = 8.854 \times 10^{-9}$ C is located in a vacuum at P_2 (2,3,1). The force on Q_2 due to a charge $Q_1 = 4\pi \times 10^{-3}$ C at P_1 (2,2,1) is: (Note: All the coordinates are measured in Meters. a_x , a_y and a_z are unit vectors in X. Y and Z direction respectively.)


a) a _v N	b)	-a _y N
c) 4a _x +5a _y +2a _z N	d)	-4a _x -5a _y -2a _z N

A low pass filter as shown in following figure is built using an operational amplifier having unity gain bandwidth of 1MHz. What is the bandwidth of this circuit?

1	1			
	a)	1 KHz	b)	10 KHz
	c)	100 KHz	d)	500 KHz

What is the frequency and duty cycle of output Y, when CLK frequency is 1MHz @ 50% duty cycle?

a)	500 KHz @ 50% duty cycle	b)	500 KHz @ 25% duty cycle
c)	250 KHz @ 50% duty cycle	d)	250 KHz @ 25% duty cycle

INDIAN SPACE RESEARCH ORGANISATION

Page 2 of 18

ELI	ECTRO	ONICS - 2013			SET -A
6	For a	an isotropic radiato oe the electric field	or, electric field in intensity at a distar	tensity at	a distance R is measured as 3V/m. Wha
	a)	1 V/m		b)	$\frac{1}{3}$ V/m
	c)	$\frac{1}{9}$ V/m		d)	3V/m
7	The l	ogic function imple	emented by following	ıg 4:1 MU	UX is
		- x Y X	l ₀ l ₁ l ₂ l ₃		Z
			X (MSB) Y (LSB) }	
	a)	Z = X and Y		b)	Z = X or Y
	c)	Z = X xor Y		d)	Z = X xnor Y
8	term	inated in its chara		e, and a 2	ion line at 10KHz is 200-j50 ohms. Line i 28.28V p-p signal is measured at its inputer arce to the line?
	a)	0.5 W		b)	0.485W
	c)	0.47 W		(d)	0.25 W
9	Whic	ch is the correct wa	veform across capa	icitor in t	he following circuit?
		5 Vrms 50 Hz		\	10nF 1K
•	a)			b)	
-	c)			d)	

इसरो विकास	INDIAN SPACE RESEARCH ORGANISATION	Page 3 of 18
L		

ELE	CTRO	NICS – 2013		SET -A		
10	Input voltage applied to a circuit is 1V rms and the output is 1mV rms. Net gain of the circuit is:					
	a)	+ 30dB ·	b)	- 30dB		
	c)	- 60dB	d)	+ 60dB		
11	Two ideal quantizers A and B have following specifications: A: 5 bit Quantizer with input dynamic range of -1V to +1V with Q1 as quantization noise power B: 8 bit Quantizer with input dynamic range of -0.5V to +0.5V with Q2 as quantization noise power. Then Q1/Q2 will be					
	.a)	16	b).	256		
	c) <u>.</u>	64	d)	128		
12	The d	ivergence of magnetic field intensity is				
	a)	Electric charge density	b)	Electric field intensity		
	c)	Zero	d)	Conduction current density		
		erved on oscilloscope, which looks like and rate and transmitted data? Baud rate = 9600, Data = 55h	a square	wave with frequency of 9600 Hz. What is Baud rate = 19200, Data = 55h		
	c)	Baud rate = 19200, Data = FFh	d)	Baud rate = 9600, Data = AAh		
14	A trai 100K What	nsmission line having characteristic im Hz to a load. Maximum permissible va is the maximum VSWR that can be to	pedance lue of rm lerated o	of 50ohms has to deliver 10KW power at as current anywhere along the line is 20A.		
	a)	2	b)	1		
1.5	c)	3	d)	2.5		
15		Hurwitz criterion is used to determin	· · · · ·	C.I.		
	a) c)	Relative stability of the system Absolute stability of the system	d)	Time response of the system Roots of the characteristic equation graphically		
16	signal	ecoding circuit shown in the figure is held of memory interfaced to 8 bit micropiand size of memory? A15 A14 A13 A12		1 Y., 1		
	0)	Doodh to EFFEh size- &K Partes	h)	DOOOD to DEEED size= AK Rytes		

इसरो डिन्ट	INDIAN SPACE RESEARCH ORGANISATION	Page 4 of 18

C000h to FFFFh, size= 16K Bytes

E000h to EFFFh, size = 4K Bytes

ELECTRONICS - 2013.

17	If the waveguide cross-section of a square waveguide with TE11 propagation mode is					
	gradually deformed into'a circle, then the corresponding circular waveguide mode will be:					
	a)	TE11	b)	TE10		
	c)	TE21	d)	TE12		
-18	Wha	t could be the output current rating of f	ollowing	shunt regulator?		
		50Ω				
•		10V	/			
		10V 5V T	7	* ↓		
		\perp 0.4W \perp		· ;		
		= 0.00 =	-	- gain an Aprille - ver		
·	a)	$0 < I_L < 100 \text{mA}$	b)	$20\text{mA} < I_{L} < 100\text{mA}$		
	c)	$0 < I_L < 50 \text{mA}$	d)	$10 \text{mA} < I_L < 100 \text{mA}$		
19	An F	M-CW (Frequency Modulated – Contin	uous Wa	eve) Radar is essentially		
	a)	Bistatic	h)	Manada		
	· · · · · · · · · · · · · · · · · · ·	Can operate either as monostatic or as	b)	Monostatic		
	c)	bistatic	d)	None of the above		
20	The f	lux in a magnetic core is sinusoidally va	wine of	200 II - TL		
20	Tesla	and eddy current loss is 15 W. If the fr	aying at	is raised to 400 Hz and maximum flux		
	densi	ty reduced to 1 Tesla, the eddy current	loss will	is raised to 400 Hz and maximum mux		
	a)	Reduce to half	b)	Get doubled :		
	c)	Reduce to one-fourth	d)	Remain same		
21	The e	electric field intensity E and magnetic fie	eld intens			
	free s	pace in x and y direction respectively, tl	ie Poynfi	ng vector is given by		
	a)	EHx̂	b)	$EH\hat{v}$		
	c)	EHxŷ .	d)	None of the above		
22	If x a	nd y are two random signals with zero r				
	stand	ard deviation, the phase angle between	them is	assian distribution having identical		
	a)	Zero mean Gaussian distributed	b)	Uniform between $-\pi$ and π		
	c)	Uniform between $-\pi/2$ and $\pi/2$	d)	Non-zero mean Gaussian distributed		
23	יייייייייייייייייייייייייייייייייייייי					
		urrent flowing through a capacitor in a	n AC circ	cuit is:		
	a)	Non-existent	b)	Conduction current		
	c)	Displacement current	d)	None of the above		

इससे डिन्ट

24	Which of the following is the Boolean function for Majority Voting, assuming A,B,C are inputs							
	and Y	is output? '						
	a)	Y = AB + AC + CB	b)	Y = A + B + C				
	c)	Y= ABC	d)	Y = AB + BC				
25		For broadside antenna array, the largest possible spacing between the antenna elements without any grating lobes is						
	a)	<i>y</i> 2	b)	λ				
	c)	2 λ	d)	None of the above				
26	3000 3002 3003 3004 3005	ation of the program is MVI A, 45H MOV B, A STC CMC RAR XRA B	b)	w, the content of the accumulator after the 45H				
	c)	67H	d)	E7H				
27	Cone	duction angle of a Class AB amplifier	is:					
	a)	<180°	b)	Between 180° and 360°				
	(c)	360°	d)	90°				
28	For	For non dispersive medium						
	a)	Phase velocity > Group velocity	b)	Phase velocity < Group velocity				
	c)	Phase velocity = Group velocity	d)	None of the above				
29	 	ottky clamping is resorted in TTL gat	es					
	a)	to reduce propagation delay	b)	to increase noise margins				
	c)	to increase packing density	d)	to increase fan-out				
30	At c	ut-off frequency, the phase velocity of	f a wavegi					
	a)	Zero	b)	Infinite				
	c)	Finite	d)	None of the above				
31	A Z	ener diode, when used in voltage stab	ilization c	ircuits, is biased in				
	a)	reverse bias region below the breakdown voltage	b)	reverse breakdown region				
	(c)	forward bias region	d)	forward bias constant current mode				

32	i i i i i i i i i i i i i i i i i i i					
	the gain and phase margins?					
	•					
			30	-		· 180 .
				Gain		
			20		=:::\	120
				\ \'	•	` Phase
			10	·, ×		60
		≅	10			• • • • • • • • • • • • • • • • • • • •
		(dE	_			J P
		Gain (dB)	0		/-/-	Phase (Degree)
		G				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			-10		<u>-</u>	
						Ä Ä
			-20			-120
			-30			-180
			.00			-100
				I		\ 1
		2040	000			100 ID 000
	a)	20dB			b)	26dB, 80°
22	c)	20dB	, 120		<u>d)</u>	26dB, 120°
33	If fo	r a sili	con n	pn transistor, the base-to-emi	itter volt	age (VBE) is 0.7V and the collector-to-
	base voltage (VCB) is 0.2 V, then the transistor is operating in the					
				ve mode		
	a)			12000	b)	saturation mode
24	c)			ve mode · ·	d) ·	cutoff mode
34		rt Circ				
	a)			, matched	b)	Non reciprocal, unmatched
	c)			ocal, matched	d)	Reciprocal, unmatched
35	An 8	B bit rij	pple o	counter and an 8 bit synchron	ious coui	nter are made using flip flops having a
<i>i</i> [propagation delay of 10 ns each. If the worst case delay in the ripple counter and the					
	synchronous counter be R and S respectively, then					
	a)			S = 80 ns	b)	R = 40 ns, S = 10 ns
	c)	R = 1	0 ns S	S = 10 ns	d)	R = 80 ns, S = 10 ns
`36	Gair	of an	RC I	ow pass filter having a time c	onstant '	'τ' and frequency 'ω' is:
	a)	$\sqrt{1+}$	(ωτ)	2	b)	$1/\sqrt{1+(\omega\tau)^2}$
	c)	$\omega \tau / $	1+($(\omega \tau)^2$	d)	$\omega \tau / \sqrt{1 - (\omega \tau)^2}$

ELECTRONICS - 2013 - SET -A

37	For a directional coupler, the quantities I (isolation in dB), D (directivity in dB), C (coupling in					
	dB) are related by					
	a) I	=C/D	b)	I = D - C .		
		I = D + C	d)	I= D/C		
38	The tv	vo numbers represented in signed 2's co	ompleme	nt form are $P = 11101101$ and $Q =$		
	11100	110. If Q is subtracted from P , the value				
	a)	100001111	b)	00000111		
		11111001	d)	111111001		
39	<u> </u>	tion type MOSFET operates in:				
		Depletion Model only	b)	Enhancement Mode only		
	c)	Both depletion and enhancement mode	d)	None of the above		
40	Electi	ric Field and Magnetic Field are perpen				
	<u> </u>	Klystron	b)	Magnetron		
		TWTA	d)	All of the above		
41	A linear regulator is attempted using discrete components as shown below. What is the output voltage?					
		2.5V 2.5V) 4mA	* * * * * * * * * * * * * * * * *		
	(a)	9.3 V	b)	7.5 V		
	c)			2.5 V		
42	If ra	nge of a radar is to be doubled, the peal				
	a)	Increased by a factor of 2	b)	Increased by a factor of 4		
	c)	Decreased by a factor of 4	d)	Increased by a factor of 16		
43	The aver	electric field measured in the far field o age power densities at a distance of 500	f an ante m from t	he antenna is		
	a)	26.6μW/m ²	b)	$0.1\mu \text{W/m}^2$		
	(c)	$10\mu \text{W/m}^2$	d)	$13.3\mu\text{W/m}^2$		

 INDIAN SPACE RESEARCH ORGANISATION	Page 8 of 18

	• • • • • • • • • • • • • • • • • • • •						
44	If a counter having 10 Flip Flops is initially at 0, what count will it hold after 2060 pulses?						
	a) -	000 000 1100	b)	000 001 1100			
	c)	000 001 1000	d)	000 000 1110			
45	For	a frequency modulated signal repre	sented by	$s(t)=10\sin(6 \times 10^8 t + 2\sin(100\pi t))$. The			
	maxi	mum frequency deviation in the carrie	r from its	unmodulated frequency is:			
	a)	990Hz	b)	100Hz			
	c)	50Hz	d)	200Hz			
46	For v	which of the following conditions, the	circuit sh	own below will function as precision full			
	wave	rectifier?		•			
	· .	R2		R3			
		R		`'			
		 	+				
		R >	→	+ Vo			
		Vin ⟨√⟩	7				
		, <u> </u> <u> </u>	Y				
		=					
		<u> </u>					
	a)	R1 = R2 = R	b)	R1 = R3 = R			
	c)	R2 = 2R1	d)	R1 = R2 = R3			
47	Inar	nonostatic radar, if the antenna apertu	re is doub	oled, then the radar range will			
	a)	Reduce by a factor of 2	b)	Increase by a factor of 2			
	c)	Reduce by a factor of $\sqrt{2}$	d)	Increase by a factor of $\sqrt{2}$			
48	The d	lisadvantage of single stub matching is	that				
	a)	Every load needs a new stub position	b)	Only shunt stub should be used			
	c)	Only resistive load can be matched	d)	Useful only in two wire transmission line			
49	A cer	tain antenna with an efficiency of 95%	has maxi	imum radiation intensity of 0.5 W/sr. The			
	directivity of the antenna fed by input power of 0.4 W						
	a)	16.53	b)	12.2			
	c)	10.36	d)	11.31			
50	A me	mory system of size 16 K bytes is requi		designed using memory chips which have			
	12 ad	Idress lines and 4 data lines each. The	ien numh	per of such chips required to design the			
	memo	ory system is		or or such emps required to design the			
\Box	a)	2	b)	4			
	c)	8	d)	16			
			4)				

Á	
इमरो डिन्त	ā

SET-A

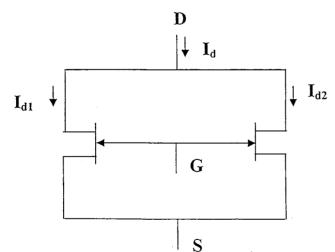
51 In the asymptotic bode plot of a transfer function of a closed loop system shown below, the number of poles and zeros are, 40 30 20 10 0 1K 10K 1M Freq 100 100K -10 -20 3 pole, 2 zero 2 pole, 2 zero a) b)

Plane Wave travelling in free space has an average Poynting vector of 3W/m². Average energy density (nJ/m³)of the wave is:

d)

3 pole, 1 zero

 a)
 10


 c)
 1

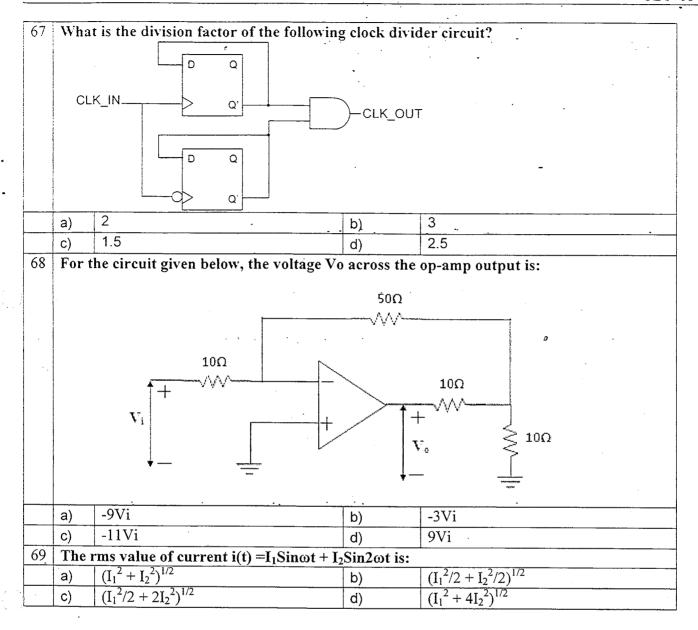
 d)
 3

2 pole, 1 zero

c)

For two identical n-channel JFET's connected in parallel as shown in fig. below, the pinch-off voltage of equivalent JFET is:

इसरो डिन्ट


INDIAN SPACE RESEARCH ORGANISATION

Page 10 of 18

	a)	Doubled '	b)	Becomes half
	c)	Remains same	d)	None of the above
54		velocity at which a sinusoidal signa for which L=0.4 μH/m and C=40 pH		/s travels down a loss-less transmission
	a)	$2.36 \times 10^8 \text{ m/s}$	b)	2.5 x 10 ⁸ m/s
	c)	5 x 10 ⁹ m/s	d)	4.5x10 ⁹ m/s
55				
	a)	Ampere's Law	b)	Faraday's Law
	c)	Lenz's Law	d)	Both b and c
56		ssless line having characteristic imp VSWR of the line will be:	edance Zo	is terminated with a load impedance of
	a)	1	b)	10
	c)	Infinite	d) :	None of the above
57		gnal $1 + \cos(2\pi ft) + \cos(6\pi ft)$ where usform is carried out. How many lin		
	a)	5	b)	1
	c)	3	d)	2
58	The	array factor of an array antenna de	epends on	
	a)	Number of radiating elements	b)	Spacing between the elements
	.c)	Phase of the applied signal	d)	All of the above
59	Whi	ch of the following parameter is im	proved by i	introducing pipelining in digital design?
	a)	Area (Gate count)	b)	Maximum clock frequency
-	c)	Power dissipation -	d)	Noise
60		ansmission line having characteristi impedance ' Z_L ' appears in a Smith		ce 'Z _t ' of varying length in series with a
	a)	Constant Resistance Circle	b)	Constant VSWR Circle
	c)	Constant Reactance Circle	d)	All of the above
61	Imp	edance characteristics on a Smith (Chart repea	at after a distance of:
	a)	λ	b)	λ/4
	c)	λ/2.	d)	None of the above

62	If τ is the time constant and ω is the applied frequency, a low pass RC filter acts as a pure						
	integrator when:						
	a) $\omega \tau = 0$		b)	ωτ>> 1			
	c) $\omega \tau = 1$		d)	ωτ<< 1			
63	10μF capaci	tor is connected across secon	dary windi	ng of a high frequency transformer			
	~ -	ary to secondary turns ratio 5	3:2. What is	the value of capacitance seen across			
	primary?						
	a) 4µF		b)	62.5μF			
	c) 25µF		d) ·	1.6μF			
64	What will b	e the output of the following ci	rcuit, if poi	nt-P is stuck at 1?			
	. A —						
	B —						
	c — 1) P //					
)						
	a) A+B+	C	b)	A'B'C'			
	c) (ABC)	1 .	d) .	0			
65	For the curi	ent mirror circuit shown belo	w, if the em	itter area of Q2 is thrice of Q1, the			
	current I is:	$V_C = +10V$					
		• • • • • • • • • • • • • • • • • • • •					
		R = \bigs\{		•			
	$20 \mathrm{K}\Omega$						
				*			
		Qı		Q 2			
		·					
		<u> </u>					
		·					
	V_{E} = -10 V						
	a) 0.328		b)	2.955mA			
	c) 0.105	mA	d)	0.012mA			
66				/μs. The maximum frequency of			
		oidal signal that can be reprod	uced is:				
	a) 398H		b)	796Hz			
	(c) 796K	H ₂ .	d)	398KHz			

इसरो डिन्ट	INDIAN SPACE RESEARCH ORGANISATION	Page 12 of 18
'		

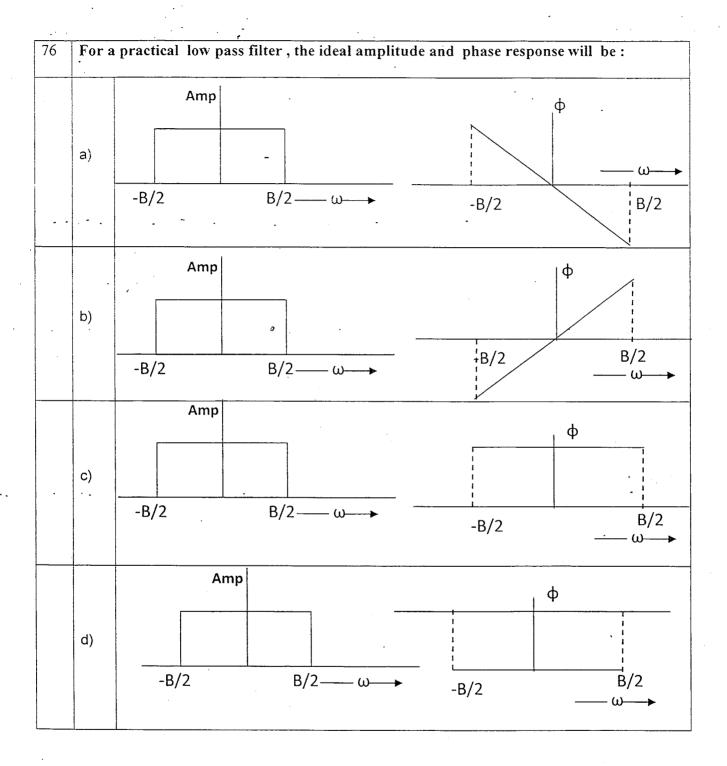
70	Civer	the output for the following non-i	nverting sum	uming amplifier, the relation between		
70	Given the output for the following non-inverting summing amplifier, the relation between R _f and R in the circuit is:					
	14 411	a remember out to				
		8				
		\$				
		12 — VVV—				
		3				
		3 7		Vo= (V1+V2+V3+V4)/2		
		\(\frac{1}{2} \rightarrow \rig				
			- -			
		₹.				
		R ◆				
				·		
	a)	$R_f = R$	b)	R _f =4R		
	c)	R _f =2R	d)	$R_f = R/2$		
71				ec rise time is to be measured on an		
	osciii	oscope. The minimum required bar	nawiath of th	e oscilloscope is,		
	a)	500 kHz	b)	14.3 MHz		
	c)	5 MHz	d)	200 kHz		
72	Mult	iple collectors are used in Traveling	g Wave Tube	(TWT) to:		
	a)	To distribute the dissipated heat evenly	b)	To increase the overall efficiency		
	c)	To increase the gain of the TWT	d)	To shape the electron beam		
73	A lossless antenna has directional gain $G(\theta, \phi)$, then $\int_{\varphi=-\pi/2}^{\varphi=\pi/2} \int_{\theta=-\pi/2}^{\theta=\pi/2} G(\theta, \varphi) d\theta d\varphi$ is :					
	Z					
	$G(\theta, \phi)$					
	Y /					
		θ				
		ф ф				
	X					

INDIAN SPACE RESEARCH ORGANISATION

Page 14 of 18

EL.	ECTRO	ONICS – 2013			SET
	,	•			
	a);	4π		b)	2π
	c)	$\leq 4\pi$		d)	$\leq 2\pi$
74	$\sqrt{\frac{3}{\sqrt{C}}}$	Sosx – jSinx is	equal to		
	a)	$(\cos x)^{1/3} - j(s$	$(nx)^{1/3}$	b)	$\sqrt[3]{\cos^2 x - j\sin^2 x}$
	c) -	$\cos\frac{x}{3} - j\sin\frac{x}{3}$		d)	$\sin\frac{x}{3} - j\cos\frac{x}{3}$
75	will		8bit A/D	8bi	→ Output
			fs , Sampling Fred	quency	
	a)	0V		b)	DC value anywhere between -1V and

b)


d)

+1V

1Vp-p 1MHz sinusoid

c)

DC value anywhere between - 0.5V and +0.5V

इसरी डिन्ट	INDIAN SPACE RESEARCH ORGANISATION	Page 16 of 18

	a)	the noise figure of the cascaded 3dB	b)	12dB	
	c)	7dB	d)	None of the ab	ove
78		3.33% duty cycle rectangular			
	Wha	t will be observed?			- p
	a)	2 nd , 5 th , 8 th harmon missing	D)	3 rd , 6 th , 9 th missing	harmonics
	c)	1 st , 4 th , 7 th harmoni missing	cs d)	All the harmon	ic present
79	Phas	e function of a filter is $(f) = kf$	$f^2, k > 0$. Th	e group delay of the	filter has the shane
					,
					
			Group Dela	201	
			Group Dela	iy .	
	a)				
	1				
•	}		f	-	
		·		·	
			Group D	elav	
				, '	
	b)				•
	D)				
		· /		-f →	
			•••	•	
			1		
			Crou	ın Dolov	
			Giol	up Delay	,
	c)				
	5)				
				f	
	1				

इसरो ।इन्त

ELE	CIRO	NICS - 2013	· .	<u> </u>		<u>.</u>	SET-
			,		Group Delay		
	d)						
		-			f		
80		-p sinusoid is The signal to r			-to-D converter with inpized signal is:	ut dynamic range of	f 2V
	a)	384					
	b)	96					
	c)	48					
	4/	24					

End of questions

वनद्यां क्रिसङ्	INDIAN SPACE RESEARCH ORGANISATION	Page 18 of 18